ISO 19123-3:2023

International Standard   Current Edition · Approved on 21 June 2023

Geographic information — Schema for coverage geometry and functions — Part 3: Processing fundamentals

ISO 19123-3:2023 Files

English 77 Pages
Current Edition
96.06 OMR

ISO 19123-3:2023 Scope

This document defines a coverage processing language for server-side extraction, filtering, processing, analytics, and fusion of multi-dimensional geospatial coverages representing, for example, spatio-temporal sensor, image, simulation, or statistics datacubes. Services implementing this language provide access to original or derived sets of coverage information, in forms that are useful for client-side consumption.

This document relies on the ISO 19123-1 abstract coverage model. In this edition, regular and irregular multi-dimensional grids are supported for axes that can carry spatial, temporal or any other semantics. Future editions will additionally support further axis types as well as further coverage types from ISO 19123-1, specifically, point clouds and meshes.

Best Sellers

GSO 150-2:2013
 
Gulf Standard
Expiration dates for food products - Part 2 : Voluntary expiration dates
OS GSO 150-2:2013
GSO 150-2:2013 
Omani Standard
Expiration dates for food products - Part 2 : Voluntary expiration dates
OS GSO 2055-1:2015
GSO 2055-1:2015 
Omani Standard
HALAL FOOD - Part 1 : General Requirements
GSO 2055-1:2015
 
Gulf Technical Regulation
HALAL FOOD - Part 1 : General Requirements

Recently Published

ISO 19970:2025
 
International Standard
Refrigerated hydrocarbon and non-petroleum based liquefied gaseous fuels — Metering of gas as fuel on LNG carriers during cargo transfer operations
ISO 3664:2025
 
International Standard
Graphic technology and photography — Viewing conditions
ISO/IEC 14496-10:2025
 
International Standard
Information technology — Coding of audio-visual objects — Part 10: Advanced video coding
ISO 19361:2025
 
International Standard
Measurement of radioactivity — Determination of beta emitters activities — Test method using liquid scintillation counting