GSO ISO 11210:2024
ISO 11210:2023
Gulf Standard
Current Edition
· Approved on 14 October 2024
Jewellery and precious metals — Determination of platinum — Gravimetry using ammonium chloride
Replaced Documents:
This document replaces
GSO ISO 11210:2021
Historical Editions!
This document has these historical editions
GSO ISO 11210:2021 & GSO ISO 11210:2008
Adoption Without Modification!
This document is an identical adoption of
ISO 11210:2023
GSO ISO 11210:2024 Files
No files for this standard are available in the store currently.
GSO ISO 11210:2024 Scope
This document specifies a gravimetric method for the determination of platinum on a material considered homogeneous. The platinum content of the sample lies preferably between 50 and 999 parts per thousand (‰) by mass. Fineness above 999 ‰ can be determined using a spectroscopy method by difference (e.g. ISO 15093).
This method is also intended to be used as one of the recommended methods for the determination of fineness in jewellery alloys covered by ISO 9202.
Best Sellers From Metrology Sector
GSO OIML R87:2021
OIML R87:2016
Gulf Standard
Quantity of product in prepackages


GSO OIML R79:2021
OIML R79:2015
Gulf Standard
Labeling requirements for prepackages


OS GSO OIML R76-1:2009
OIML R 76-1:2006
Omani Standard
Non-automatic weighing instruments –
Part 1: Metrological and technical requirements - Tests



GSO OIML R 76-1:2009
OIML R 76-1:2006
Gulf Standard
Non-automatic weighing instruments –
Part 1: Metrological and technical requirements - Tests


Recently Published from Metrology Sector
GSO ISO 80004-1:2024
ISO 80004-1:2023
Gulf Standard
Nanotechnologies – Vocabulary
— Part 1: Core vocabulary


GSO IEC 62055-31:2024
IEC 62055-31:2022
Gulf Standard
Electricity metering - Payment systems - Part 31: Particular requirements - Static payment meters for active energy (classes 0,5, 1 and 2)


GSO ISO 16399:2024
ISO 16399:2023
Gulf Standard
Agricultural irrigation equipment
— Meters for irrigation water


GSO ISO 8529-3:2024
ISO 8529-3:2023
Gulf Standard
Neutron reference radiation fields
— Part 3: Calibration of area and personal dosemeters and determination of their response as a function of neutron energy and angle of incidence

