GSO IEC 60331-3:2024

IEC 60331-3:2018
Gulf Standard   Current Edition · Approved on 14 October 2024

Tests for electric cables under fire conditions - Circuit integrity - Part 3: Test method for fire with shock at a temperature of at least 830 °C for cables of rated voltage up to and including 0,6/1,0 kV tested in a metal enclosure

GSO IEC 60331-3:2024 Files

GSO IEC 60331-3:2024 Scope

IEC 60331-3:2018 is available as IEC 60331-3:2018 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.
IEC 60331-3:2018 specifies the test method for cables which are required to maintain circuit integrity when tested in a metal enclosure and when subject to fire and mechanical shock under specified conditions. This document is applicable to cables of rated voltage not exceeding 600 V/1 000 V, including those of rated voltage below 80 V, metallic data and telecom cables and optical fibre cables. It is intended for use when testing cables not greater than 20 mm overall diameter. This document includes details for the specific point of failure, continuity checking arrangement, test sample, test procedure and test report relevant to electric power and control cables with rated voltage up to and including 600 V/1 000 V. Details for the specific point of failure, continuity checking arrangement, test sample, test procedure and test report relevant to metallic data and telecom cables and optical fibre cables are not given by IEC 60331-3. Although the scope is restricted to cables with rated voltage up to and including 0,6/1,0 kV, the procedure can be used, with the agreement of the manufacturer and the purchaser, for cables with rated voltage up to and including 1,8/3 (3,3) kV, provided that suitable fuses are used. It is not assumed that cables successfully assessed by this method, will also pass requirements for either IEC 60331-1 or IEC 60331-2. Testing to either of these two standards is to be carried out separately. Such additional performance can be recognised by the marking in accordance with IEC 60331-1:2018 Clause 11 or IEC 60331 2:2018 Clause 11. This second edition cancels and replaces the first edition published in 2009. It constitutes a technical revision. The significant technical changes with respect to the previous edition are as follows:
– extension of the scope to include metallic data and telecom cables and optical fibre cables, although details for the specific point of failure, continuity checking arrangement, test sample, test procedure and test report relevant to metallic data and telecom cables and optical fibre cables are not given by IEC 60331-3;
– improved description of the test environment;
– mandatory use of mass flow meter/controllers as the means of controlling accurately the input flow rates of fuel and air to the burner;
– improved description of the information to be included in the test report.

Best Sellers From Electrical Sector

GSO 2530:2016
 
Gulf Standard
Energy Labelling And Minimum Energy Performance Requirements For Air-Conditioners
OS GSO 2530:2016
GSO 2530:2016 
Omani Standard
Energy Labelling And Minimum Energy Performance Requirements For Air-Conditioners
OS GSO 34:2007
GSO 34:2007 
Omani Standard
LEAD-ACID STARTER BATTERIES USED FOR MOTOR VEHICLES AND INTERNAL COMBUSTION ENGINES
GSO 34:2007
 
Gulf Technical Regulation
LEAD-ACID STARTER BATTERIES USED FOR MOTOR VEHICLES AND INTERNAL COMBUSTION ENGINES

Recently Published from Electrical Sector

GSO 2770:2024
 
Gulf Standard
WATER HEATERS - ENERGY PERFORMANCE REQUIREMENTS
GSO IEC 61558-2-2:2024
IEC 61558-2-2:2022 
Gulf Standard
Safety of transformers, reactors, power supply units and combinations thereof - Part 2-2: Particular requirements and tests for control transformers and power supply units incorporating control transformers
GSO IEC 60664-1:2024
IEC 60664-1:2020 
Gulf Standard
Insulation coordination for equipment within low-voltage supply systems - Part 1: Principles, requirements and tests
GSO IEC 61936-2:2024
IEC 61936-2:2023 
Gulf Standard
Power installations exceeding 1 kV AC and 1,5 kV DC - Part 2: DC