OS GSO IEC 60794-1-111:2024
IEC 60794-1-111:2023
Omani Standard
Current Edition
·
Approved on
14 October 2024
Optical fibre cables - Part 1-111: Generic specification - Basic optical cable test procedures - Mechanical tests methods - Bend, method E11
OS GSO IEC 60794-1-111:2024 Files
No files for this standard are available in the store currently.
Obtaining this standard through the store is currently unavailable. You can acquire it directly from its source.
OS GSO IEC 60794-1-111:2024 Scope
IEC 60794-1-111: 2023 defines the test procedure to determine the ability of an optical fibre cable to withstand bending around a test mandrel. The primary purpose of this procedure is to measure the change in attenuation when the cable is bent around a test mandrel. A secondary purpose is to assess whether the cable has been physically damaged by bending. NOTE 1 This test can be utilized at any specified temperature, including the low or high temperature limits for the cable. NOTE 2 The bend test procedure for cable elements is specified in IEC 60794-1-301, method G1. This document partially cancels and replaces IEC 60794-1-21:2015. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to IEC 60794‑1‑21:2015:
a) the nominal sample length was newly specified as 10 m between the cable element fixing points at both ends, unless otherwise specified;
b) the number of turns on the mandrel in Figure 1 for the single-helix configuration were corrected to match the number of turns shown in the figure for the two-helix configuration;
c) requirements on the turnaround loop were added for method E11A, two-helix configuration;
d) the turnaround loop with the same diameter as the mandrel was taken into account for calculation of the number of turns of each helix for method E11A, two-helix configuration;
e) added a formula for calculation of the number of revolutions in each helix for method E11A, two-helix configuration;
f) added a description for the procedure when the turnaround loop diameter is larger than the mandrel diameter for method E11A, two-helix configuration;
g) all the figures were updated and the different components labelled;
h) added the attenuation monitoring equipment in 4.2 for the apparatus and the description to measure the change in attenuation in the test methods E11A and E11B;
i) added Clause 9 for details to be reported;
j) added Annex A showing an example of a special mandrel to perform the bend test according to method E11A, two-helix configuration;
k) added Annex B providing the rationale for the options of method E11A, two-helix configuration.
a) the nominal sample length was newly specified as 10 m between the cable element fixing points at both ends, unless otherwise specified;
b) the number of turns on the mandrel in Figure 1 for the single-helix configuration were corrected to match the number of turns shown in the figure for the two-helix configuration;
c) requirements on the turnaround loop were added for method E11A, two-helix configuration;
d) the turnaround loop with the same diameter as the mandrel was taken into account for calculation of the number of turns of each helix for method E11A, two-helix configuration;
e) added a formula for calculation of the number of revolutions in each helix for method E11A, two-helix configuration;
f) added a description for the procedure when the turnaround loop diameter is larger than the mandrel diameter for method E11A, two-helix configuration;
g) all the figures were updated and the different components labelled;
h) added the attenuation monitoring equipment in 4.2 for the apparatus and the description to measure the change in attenuation in the test methods E11A and E11B;
i) added Clause 9 for details to be reported;
j) added Annex A showing an example of a special mandrel to perform the bend test according to method E11A, two-helix configuration;
k) added Annex B providing the rationale for the options of method E11A, two-helix configuration.
Best Sellers From Electrical Sector
GSO 2530:2016
Gulf Standard
Energy Labelling And Minimum Energy Performance Requirements For Air-Conditioners
OS GSO 2530:2016
GSO 2530:2016
Omani Standard
Energy Labelling And Minimum Energy Performance Requirements For Air-Conditioners
OS GSO 34:2007
GSO 34:2007
Omani Standard
LEAD-ACID STARTER BATTERIES USED FOR
MOTOR VEHICLES AND INTERNAL
COMBUSTION ENGINES
GSO 34:2007
Gulf Technical Regulation
LEAD-ACID STARTER BATTERIES USED FOR
MOTOR VEHICLES AND INTERNAL
COMBUSTION ENGINES
Recently Published from Electrical Sector
GSO IEC 63203-402-3:2025
IEC 63203-402-3:2024
Gulf Standard
Wearable electronic devices and technologies - Part 402-3: Performance measurement of fitness wearables - Test methods for the determination of the accuracy of heart rate
GSO IEC 61010-2-033:2025
IEC 61010-2-033:2023
Gulf Standard
Safety requirements for electrical equipment for measurement, control, and laboratory use - Part 2-033: Particular requirements for hand-held multimeters and other meters for domestic and professional use, capable of measuring mains voltage
GSO IEC 62841-4-1:2025
IEC 62841-4-1:2017
Gulf Standard
Electric motor-operated hand-held tools, transportable tools and lawn and garden machinery - Safety - Part 4-1: Particular requirements for chain saws
GSO IEC 62933-5-3:2025
IEC 62933-5-3:2023
Gulf Standard
Electrical energy storage (EES) systems - Part 5-3: Safety requirements for grid-integrated EES systems – Performing unplanned modification of electrochemical based system